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Abstract: Alzheimer’s disease has become a major concern in the healthcare domain as it is growing
rapidly. Much research has been conducted to detect it from MRI images through various deep
learning approaches.However, the problems of the availability of medical data and preserving the
privacy of patients still exists. To mitigate this issue in Alzheimer’s disease detection, we implement
the federated approach, which is found to be more efficient, robust, and consistent compared with the
conventional approach. For this, we need deep excavation on various orientations of MRI images and
transfer learning architectures. Then, we utilize two publicly available datasets (OASIS and ADNI)
and design various cases to evaluate the performance of the federated approach. The federated
approach achieves better accuracy and sensitivity compared with the conventional approaches in
most of the cases. Moreover, the robustness of the proposed approach is also found to be better
than the conventional approach. In our federated approach, MobileNet, a low-cost transfer learning
architecture, achieves the highest 95.24%, 81.94%, and 83.97% accuracy in the OASIS, ADNI, and
merged (ADNI + OASIS) test sets, which is much higher than the achieved performance in the
conventional approach. Furthermore, in the proposed approach, only the weights of the model are
shared, which keeps the original MRI images in their respective hospital or institutions, preserving
privacy in the healthcare domain.

Keywords: federated learning; Alzheimer’s disease; medical imaging; MRI image

MSC: 68T07; 92C55

1. Introduction

Alzheimer’s disease (AD) is among the most prevalent neurodegenerative diseases
in the world. The risk of developing this condition increases in tandem with the patient’s
chronological age. Alzheimer’s disease may be the underlying cause of dementia in about
6 million people in the US, where most of them are in the more than 65 years of age group.
This disease is now the sixth biggest cause of death in the US [1]. The other causes of AD
include genetic, behavioral, and environmental factors that gradually impact the brain [2].
As Alzheimer’s disease is incurable, and early detection of this disease can be extremely
beneficial. A variety of cognitive and behavioral tests are used to diagnose this disease.
However, MRI images of the brain can provide important information for diagnosing this
condition [3], since Alzheimer’s disease affects a wide variety of cells and different parts
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of our brain, and MRI images reveal changes in the region’s structure or pattern. For this
reason, researchers are now trying to develop a robust and efficient approach to analyze
MRI images to detect AD through machines. They have proposed a wide range of models
based on deep learning (DL), machine learning (ML), and hybrid methods. These ML and
DL models need a lot of image data to train and also have a high computation cost [4].
If the dataset is not large enough, then the model may be biased towards a single class,
and the robustness of the models cannot be provided. However, collecting data from the
healthcare sector is usually challenging due to the sensitive nature of the data. Patients
also remain hesitant to share their medical information [5]. Therefore, a secure method to
train the deep learning models without collecting data has become a necessity to ensure
the confidentiality and integrity of medical data.

McMahan et al. [6] proposed the federated learning (FL) method, which ensures the
confidentiality and security of user data. This method involves training the model on the
local server and then sending the weights of the trained model to the global server. This
allows the global server to update its weight without knowing anything about the user data.
In this case, the user does not need to provide any personal details to the server. As a result,
the user’s privacy is secured. Using this strategy additionally guarantees that user data
will not be compromised under any circumstances. Moreover, this approach shows more
robustness compared with the conventional approach [7]. This approach was designed for
Object Detection and Handwritten Character Recognition and tested on the MNIST and
CIFAR datasets. However, in our study, a federated-learning-based AD detection approach
employing a pretrained MobileNet transfer learning architecture is proposed, which is
robust, efficient, and privacy-preserving.

MobileNet [8] is a compact and simple model that takes less time to train and is
capable of providing significant performance. In this research, MobileNet is trained in
a federated way to diagnose Alzheimer’s disease from brain MRI images. In this study,
we used two distinct datasets, namely ADNI and OASIS. There are different planes of
brain MRI images available in both of these datasets. The proposed model uses coronal
plane images after an orientation selection procedure. To ensure the robustness of the
model, different experiments are conducted by utilizing ADNI and OASIS datasets. They
are trained individually and then tested on all of the test sets of ADNI and OASIS in
each of the cases. Moreover, these datasets are combined and named as merged set. This
merged set is used to explore the robustness of the model further. In the federated learning
approach, each of these training processes on different datasets is performed solely on
different local servers using two different datasets. After that, the weights of each of
these trained models are forwarded to the main or central server. In the central server,
a deep learning model is updated. This deep learning model is same in architecture and
parameters, just like the client side, and it is called global model. The global model is
then updated by using the average weights of both of the local trained models. Here, the
user data need not to be shared to the researchers, and thus, the user’s privacy and data
confidentiality are preserved. In addition, the proposed FL-based model achieves higher
levels of accuracy and sensitivity than the usual approach. The proposed method also
shows a greater level of robustness compared with the conventional approach. This further
enhances the acceptability of the proposed model.

The following contributions are made in this paper.

• An appropriate model and MRI image orientation selection are performed.
• A federated approach is proposed to train the model, and it is found to be better

performing and more privacy-preserving.
• To ensure robustness and consistency, the proposed approach is validated against

multiple datasets and multiple test cases.

The rest of this work is organized as follows. In Section 2, the existing works on
Alzheimers’ disease detection is discussed. Section 3 explains the methodology, and the
results are discussed in Section 4. Finally, in Section 5, we provide concluding remarks and
future goals.
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2. Literature Review

There have been many Alzheimer’s disease detection methods developed so far. Most
of the techniques are implemented with ML- or DL-based approaches. These approaches
are extremely effective in other domain as well, such as COVID-19 chest X-ray classifica-
tion [9], brain tumor classification [10], image quality identification from ultrasound [11],
recognition of human activities [12], and so on. By combining shearlet-based descriptors
with deep features, Alinsaif et al. [13] suggested a technique for the representation of
characteristics that might be used for the categorization of AD. Their model can be broken
down into two distinct stages. In the first place, they preprocessed the MRI images and then
extracted features from them. They utilized the SVM and DTB algorithms for classification
purposes. Puente-Castro et al. [14] developed a hybrid model for the classification of
AD. They used the sagittal plane of the brain MRI images. After collecting the dataset,
they applied the ResNet model, extracting the features and then integrating age and sex
features with them. Then, these extracted features were classified using the SVM classifier.
Chui et al. [15] proposed a three-layered model called GAN-CNN-TL. In this particular
investigation, they used all three available variants of the OASIS dataset. They employed
GAN to generate synthetic data. Then, feature extraction from these images was performed
using a CNN. After that, they applied transfer learning to the classification of the images.

Folego et al. [16] developed two different models, called ADNet and ADNet-DA,
using a 3D CNN. Here, they first preprocessed the MRI images by extracting the skull
and also normalizing the images. After that, they employed 3D-CNN in these processed
images for extracting features and classifying them. They used four different pre-trained
architectures here. Furthermore, they employed the domain adaptation method to evaluate
the robustness of their model, which was evaluated against various test sets. Liu et al. [17]
suggested using a depthwise separable convolutional-based model as an alternative to the
conventional CNN model in order to make the model and its parameters more simple. They
implemented CNN and DSC for the purpose of AD detection. In the DSC’s convolution
layer, filtering and feature extraction were kept independent from one another. Because
of the potential for overfitting or underfitting with a smaller dataset, they additionally
relied on AlexNet and GoogleNet pretrained models for categorization. An et al. [18]
suggested a deep ensemble learning approach for classifying AD. Their dataset includes
seven distinct feature categories. Their proposed approach performed better considering
the other ensemble approach.

By combining a 3D CNN with 3D CLSTM, Xia et al. [19] were able to develop a unique
model. Their model could only perform simple categorization tasks. They employed
12 layers in total (6 convolution layers and 6 max polling layers) in their CNN model. On the
other hand, their CLSTM model was made up of three separate gates. This CLSTM model
helped improve feature extraction from images. The model’s overfitting problems were
fixed by employing data augmentation techniques to make the images larger. Using Grad-
cam, they also annotated the MRI images to show the area impacted by AD. Wei et al. [20]
applied an adaptive histogram technique for increasing the contrast of the images. In this
study, features were selected from these images using the t-test. They employed SVM and
RF for the classification of AD images.

Lin et al. [21] proposed an voting ensemble-learning-based classification model consist-
ing of the discriminators GAN, VGG16, and ResNet50. Later, they also performed a domain
adaptation task to check the robustness of the model. Kaplan et al. [22] presented a new
feed-forward method called LPQNet to reduce computational complexity with higher per-
formance. They used a newly collected dataset in this work which contains 1070 subjects
to train the model. Bringas et al. [23] used mobility data for the detection of AD. For this
purpose, they collected data from 35 patients and identified them using the CNN model.
Murugan et al. [24] developed a framework called DEMNET. This framework performed
a multiclass classifier with an accuracy of 95.23%. Furthermore, they applied SMOTE to
reduce the class imbalance problem. Lodha et al. [25] proposed an ML-based model for
AD classification. They illustrated a comparison among different algorithms in that study.
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Li et al. [26] also proposed a hybrid model using the CNN and RNN architectures. They
used DenseNet as the CNN and BGRU as the RNN model. In this hybrid model, they
evaluated the hippocampus structure and classified AD.

Basheera et al. [27] suggested a skull-stripping technique in the preprocessing stages
for eliminating unnecessary tissues. They also applied the HEICA method for collecting
segmented gray matter from MRI images. Bi et al. [28] developed a CAD system for AD
detection using an unsupervised method. This method first extracted features from the
images using a model called PCANet, which was built using the CNN model. After that,
K-means clustering was performed for grouping these features as AD or normal images.
Jabason et al. [29] implemented an ensemble model for identifying different stages of AD.
They first trained the hybrid CNN model separately for learning features from the images.
After that, a voting classifier was employed for classification purposes. Helaly et al. [30]
implemented a 2D- and 3D-based model for AD classification. They used a CNN model
for this purpose. Image preprocessing, resampling, data augmentation, etc., were also
performed in their study. Venugopalan et al. [31] proposed a multimodal DL method to
detect AD stages. They used a 3D CNN for extracting features from different modalities
of clinical and image data. They showed that shallow ML algorithms are less accurate
than their proposed model. They also found that integrating multimodal data enhance the
performance of the proposed approach.

In all of the above-mentioned research works, the goals are to find an architecture
that may perform well in Alzheimer’s disease detection. These research works did not
focus on preserving the privacy of the patients. Moreover, collecting data in the medical
domain is costly and requires permission from various authorities. Therefore, there is
a gap in this domain which deals with patient privacy, as well as developing an efficient
approach to detect Alzheimer’s disease without needing data collection from hospitals. In
our research, an approach has been proposed to detect Alzheimer’s disease which does not
require medical data to be collected. Rather, deep learning models may be trained in the
respective hospitals/institutions. This mitigates the gap and provides higher performance
than the conventional approach. Nevertheless, it is also essential to develop a robust
model in this domain. The robustness of the architectures was not proved in the above-
mentioned research. In our work, we put an effort to prove the robustness of our approach
by performing several tests.

3. Methodology

In this paper, our goal is to find out the efficacy of the federated approach in Alzheimer’s
disease detection. To achieve this, we collect two datasets (ADNI and OASIS), which are
publicly available. MRI images may be explored in different orientations, as they are in 3D
form. Hence, we explore to find an appropriate orientation from which our state-of-the-art
transfer learning architectures may learn the patterns and produce significant accuracy. In
what follows, we evaluate three different orientations of MRI images of the OASIS dataset
(with augmentation and without augmentation). We train and test them with six different
transfer learning architectures, from which we selected the optimal orientation and model.
Figure 1 illustrates the overall workflow diagram of this study.

After the orientation and model selection procedure, a federated approach is imple-
mented by performing multithreading. Another dataset, ADNI, is used in this part to verify
the robustness of the federated approach. Moreover, the performance of this approach
is compared with the conventional approach. We describe the whole process in detail in
this section.
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Simulate Conventional 
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Figure 1. Overall workflow diagram of our study.

3.1. Dataset

Alzheimer’s disease can be detected in many ways, such as brain MRI, PET scan
images, neurological evaluations, and so on. In this study, we use two different brain MRI
images datasets: ADNI and OASIS. Furthermore, these datasets are divided into many
subsets, including augmented sets, merged sets, etc. Figure 2 describes the overall structure
of the datasets.

OASIS

ADNI

OAS_COR_01

OAS_TRA_01

OAS_SAG_01
SAGGITAL

IMAGE  
AUGMENTA

TION

IMAGE  
AUGMENTA

TION

OAS_COR_02

OAS_TRA_02

OAS_SAG_02

ADNI_COR_2ADNI_COR_1
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DIVIDED INTO 
TWO PARTS 

AND 
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AGAIN

OAS_FL_01
OAS_FL_O2

MERGED

AD_OAS_
MERGED_01
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AGAIN
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Figure 2. Descriptions of the datasets used in this study: Three different planes of the OASIS dataset
are used here, which are coronal, sagittal, and transverse. Only the coronal plane of the ADNI dataset
is used here. These images were further augmented and then merged as well. Then, these images
were divided into two parts and constructed into datasets for the federated learning approach.
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3.1.1. OASIS Dataset

The purpose of the Open Access Series of Imaging Studies (OASIS) [32] dataset is
to make high-quality brain neuroimaging datasets available to the scientific community
(available on https://www.oasis-brains.org/ (accessed on 2 February 2023)). By putting
together neuroimaging datasets and making them available for free, they hope to speed
up future scientific and clinical advances in neuroscience. For neurological, clinical, and
cognitive investigations on ordinary aging and cognitive impairment, these data are widely
available and assessed across a broad range of people, including neurological and genetic
ranges. In this study, a total of 436 images are used, of which 98 image are AD-positive
and 338 are normal MRI images, which are available in 3 orientations: coronal, sagittal,
and transverse. These images are classified into four classes: Mild demented, Very mild
demented, Moderate Demented, and Cognitive Normal. Because the number of images in
each category was insufficient to make any of them statistically significant, we approach it
as a binary classification problem. Therefore, the OASIS-1 dataset’s Mild Demented, Very
Mild Demented, and Moderately Demented classes are assessed as AD-positive (labeled
as 1), and the Non-Demented class is determined to be AD-negative (labeled as 0). This
helps the models learn more about the AD-positive images, as there are different classes of
AD images that are now combined together.

3.1.2. ADNI Dataset

We collect the data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [33]
database (adni.loni.usc.edu, accessed on 2 February 2023) for checking the performance
and robustness of our proposed approach. The primary goal of the ADNI is to observe
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessments can all be used
together to track the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). More information is available at www.adni-info.org.

The findings of studies conducted by the ADNI may be of significant use in clinical
research pertaining to the diagnosis, prevention, and management of Alzheimer’s disease
(AD). It seeks biomarkers and enables precise diagnosis and tracking of AD by using
its open-source datasets. The ADNI has proven to be very beneficial for long-term MRI
and PET scans of elderly patients suffering from Alzheimer’s disease, mild cognitive
impairment, and other illnesses. We collected 321 Cognitive Normal (CN) MRI images and
136 Alzheimer’s disease (AD) MRI images from the ADNI repository. Therefore, there is no
need to convert it to a binary classification problem as it is already in this form. We consider
the Cognitive Normal (CN) class as AD-negative (labeled as 0) and the Alzheimer’s disease
(AD) class as AD-positive (labeled as 1). So, a total of 457 images are collected from
this dataset.

3.1.3. Augmentation Procedure

Data augmentation is used to increase the number of images. Deep-learning-based
models perform well on a huge amount of data. If the amount of data is very small, then
the model might be biased and may not be able to find patterns from the features of the
images properly. However, collecting medical images is often a very difficult task, as most
hospitals do not want to share their data. To overcome these challenges, data augmentation
might be useful. Thus, we use conventional data augmentation methods in this analysis
for both the ADNI and OASIS datasets. Images may be flipped, rotated, and zoomed, and
their contrast can be increased using these methods. For each dataset, we only increase
the images used in the training set. The testing set, however, is left unchanged from the
primary dataset. As DL-based models perform well with a huge amount of data, it helps
our models achieve better performance.

https://www.oasis-brains.org/
adni.loni.usc.edu
www.adni-info.org
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3.1.4. Merging Procedure

To evaluate the performance of the models, we merge the ADNI and the OASIS
datasets in the following way. In the training set, all the training images from ADNI and
OASIS are merged. On the other hand, the testing set consists of the merged images of the
ADNI and OASIS test sets.

3.1.5. Dataset Splitting

Table 1 describes the training and testing sets used in Conventional training proce-
dures, while Table 2 provides the training sets used in the training of the proposed model
in the federated way. Some of these datasets contain augmented images, and some of the
training sets were built by combining both ADNI and OASIS datasets.

OAS_COR_01, OAS_SAG_01, OAS_TRA_01: These datasets contain a total of
436 images, all of which belong to the OASIS dataset. The training set contains a to-
tal of 352 images, and the testing set contains 84 images. In this dataset, the images are
not merged or augmented. The highest number of images are from the normal class. Here,
COR stands for coronal, TRA stands for transverse, and SAG denotes the sagittal plane of
the MRI image.

OAS_COR_02, OAS_SAG_02, OAS_TRA_02: Each of these datasets contains
2500 images. These images are augmented from the OASIS dataset. The training set
contains a total of 2416 images, and the testing set remains the same as the nonaugmented
dataset, which has 84 images. Here, COR stands for coronal, TRA stands for transverse,
and SAG denotes the sagittal plane of the MRI image.

ADNI_COR_01: The ADNI_COR_01 dataset contains a total of 457 images. All the
images in this dataset were collected from the ADNI dataset. Here, the training set contains
385 images and the testing set contains 72 images. The majority of images represent the
normal classes.

ADNI_COR_02: The ADNI_COR_02 dataset consists of 2756 images. These images
are augmented from the ADNI dataset. After augmentation, the training set contains a total
of 2648 images, of which 1453 represent the normal class and 1195 represent the AD class.
On the other hand, the testing set contains 72 images.

AD_OAS_MERGED_01: This is a merged dataset combining the ADNI and OASIS
datasets together. All the training and testing images of the ADNI and OASIS datasets are
merged for training and testing purposes. Here, the training set contains 5064 images and
the testing set contains 156 images.

ADNI_FL_01, ADNI_FL_02: These datasets contain 1962 and 1961 images in each
local client training set. These images are divided from the augmented ADNI dataset, and
the number of images is increased by performing augmentation again. In the test set, both
local clients have 35 test images.

OAS_FL_01, OAS_FL_02: These datasets are derived from the augmented OASIS
dataset. Each local client contains 2153 images in the training set and 32 images in the local
testing set.

AD_OAS_FL_MERGED_01, AD_OAS_FL_MERGED_02: This dataset is found after
merging the ADNI and OASIS datasets. After merging and splitting the dataset, the two
local clients contain 4115 and 4114 images in the training set after performing another layer
of augmentation. On the other hand, in the local test set, each dataset contains 67 images.

LOCAL_AD_OAS_FL_01: This dataset consists of two different datasets for two local
clients. Local client 1 consists of the ADNI dataset in the training and testing set, and local
client 2 consists of the OASIS dataset. There are a total of 3923 images in the first local client
training set and 4306 images in the second local client training set.
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Table 1. Training and testing sets used for training in the conventional approach.

Dataset Code Dataset Merged (Yes/No) Augmented (Yes/No)
Train Image Test Image

Total 1 0 Total 1 0

OAS_COR_01 OASIS No No 352 80 272 84 18 66
OASIS_TRA_01 OASIS No No 352 80 272 84 18 66
OASIS_SAG_01 OASIS No No 352 80 272 84 18 66
OAS_COR_02 OASIS No Yes 2416 1187 1229 84 18 66
OASIS_TRA_02 OASIS No Yes 2416 1187 1229 84 18 66
OASIS_SAG_02 OASIS No Yes 2416 1187 1229 84 18 66
ADNI_COR_01 ADNI No No 385 112 273 72 24 48
ADNI_COR_02 ADNI No Yes 2648 1195 1453 72 24 48
AD_OAS_MERGED_01 ADNI + OASIS Yes Yes 5064 2382 2682 156 42 114

Table 2. Training and testing sets used for training in the federated approach.

Dataset Code Dataset
Merged Augmented Train Image Local Machine Test Image Local Machine

(Yes/No) (Yes/No) Total 1 0 Total 1 0

ADNI_FL_01 ADNI No Yes 1962 948 1014 35 10 25

ADNI_FL_02 ADNI No Yes 1961 948 1013 35 10 25

OAS_FL_01 OASIS No Yes 2153 1035 1118 32 8 24

OAS_FL_02 OASIS No Yes 2153 1035 1118 32 8 24

AD_OAS_FL_MERGED_01 ADNI + OASIS Yes Yes 4115 1983 2132 67 18 49

AD_OAS_FL_MERGED_02 ADNI + OASIS Yes Yes 4114 1983 2131 67 18 49

3.2. Orientation and Model Section

We used three different orientations (sagittal, coronal, and transverse) of MRI im-
ages and six different transfer learning architectures (DenseNet121 [34], DenseNet201,
InceptionResNetV2 [35], MobileNet, MobileNetV2, and ResNet50V2). We use both the
nonaugmented OASIS_COR_01, OASIS_SAG_01, and OASIS_TRA_01) and augmented
(OASIS_COR_02, OASIS_SAG_02, and OASIS_TRA_02) datasets for finding the optimal
model and orientation. First, we train all of our models and then evaluate the performances
of all the models using different parameters, which are accuracy, precision, sensitivity,
specificity, etc. The detailed description of these metrics is described in Section 4.1. In
almost all of the cases, the selected models perform better in the coronal plane. Again,
among these transfer learning models, MobileNet is found to be better performing in most
cases. A detailed performance analysis is provided in Section 4.2. Based on the findings
of this analysis, we selected MobileNet as the optimal model and coronal as an optimal
plane. Therefore, MobileNet and the coronal plane were used for further analysis in this
study. Figure 3 describes the procedure for selecting the best orientation and transfer
learning model.

Optimal Orientation and 
Transfer Learning Model 

for this task

OAS_COR_01

OAS_TRA_01

OAS_SAG_01

Before Image Augmentation

Transfer Learning Models
-DenseNet121
-DenseNet201

-InceptionResNetV2
-MobileNet

-MobileNetV2
-ResNet50V2

OAS_COR_02

OAS_TRA_02

OAS_SAG_02

After Image Augmentation

Performance analysis
Precision

Recall/ Sensitivity
Specificity
Accuracy

Figure 3. Pipeline for finding the best orientation and model for our study. Both augmented and
nonaugmented datasets are used in this procedure. Different performance evaluation matrices are
considered for analyzing the results of the transfer learning models.
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3.3. Proposed Federated Learning Framework

In our study, we propose to train deep learning models in a federated way. Therefore,
MobileNet is trained in a federated way to evaluate performance. The MobileNet architec-
ture is very fast and efficient for image-processing-related tasks. We used the MobileNet’s
initial weights gained from training on the ImageNet database. We only changed the last
layer (dense layer) of the MobileNet architecture. This dense layer has two neurons and
a sigmoid as an activation function. These two neurons indicate AD or normal images.

In this proposed FL-based model, two local clients are involved in its development.
These two clients have different datasets for training and validation purposes. These
datasets can be varied, or two local clients can use the same dataset. Both clients use
the same MobileNet model. While training the models, these two local clients run in
parallel, and they send their model’s weights for each epoch to the central server. Before
transferring the weights to the global server, the local clients validate their model using
the local validation dataset that evaluates the local client’s performance. In the central
server, an average of both of the local client’s weights are taken, and it is considered as the
weight of the global MobileNet model. Then, the global MobileNet containing this weight
is used to test the global test set, which provides the global validation performance. After
that, the global MobileNet weights are sent to each of the local clients for validation using
their validation set. All these actions are performed for 50 epochs. After that, the found
global MobileNet model is evaluated using different testing sets. In the global server, only
weights of the locally trained model are available, but no local training data are available
there. This ensures data security as well as confidentiality. Here, local clients do not need
to share their private data, as they just transfer the weights of the model. As a result, the
possibility of data breaching is reduced. Figure 4 depicts the federated learning procedure.

For example, when the MobileNet is trained in a federated way using the OASIS
dataset, two local machines are trained with OAS_FL_01 and OAS_FL_02 training sets,
and their corresponding test set is used as a local test. After each epoch, the weights
are adjusted. The final model is tested using a global test set, which is the same as the
conventional approach.

Figure 4. Federated learning procedure where two datasets are fed into two local machines: Weights
are adjusted after each epoch. After 50 epochs, the final global model is found, which is tested with
global test sets.
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3.4. Evaluating the Robustness of the Current Approach

We conducted a number of tests using a variety of datasets in order to assess the
robustness of our model as well as the conventional approach. The models are trained using
the OASIS dataset, and then they are tested using the ADNI dataset, and vice versa. After
that, we combined the datasets that have been trained, and after that, we test them using
the OASIS and ADNI datasets. Additionally, the ADNI- and OASIS-trained models are
utilized in an effort to validate this combined dataset. Further testing was performed on the
merged dataset using the merged testing dataset. The experimental results help to evaluate
the robustness of the models, along with the efficacy of the federated approach compared
with the conventional approach. Figure 5 shows the procedures for checking the robustness
and performance of the models trained in the conventional and federated approaches.

Training with OASIS

OASIS_COR_02

OASIS_FL_01
OASIS_FL_02

MobileNet trained in 
Conventional Approach

MobileNet trained in 
Federated Approach

Training with ADNI

ADNI_COR_02

ADNI_FL_01
ADNI_FL_02

MobileNet trained in 
Conventional Approach

MobileNet trained in 
Federated Approach

Training with Merged

MERGED_COR_02

MERGED_FL_01
MERGED_FL_02

MobileNet trained in 
Conventional Approach

MobileNet trained in 
Federated Approach

OASIS_COR_02 in 
one machine,

ADNI_COR_02 in 
another machine

Testing with OASIS_COR_01

Testing with ADNI_COR_01

Testing with Merged_COR_01

Performance 
Analysis

Figure 5. The overall procedures for testing the robustness of the models: Three different types of
training procedures with different datasets are implemented here. MobileNet with both federated
and conventional learning procedures are tested here. Moreover, a comparative performance analysis
is conducted between these two approaches.

3.5. Hyperparameters and Implementation Setup

All the models are trained with loss–binary cross-entropy, learning rate—0.001, and
Adam Optimizer. These hyperparameters are selected after performing an ablation study.
These models are trained on an NVidia K80 GPUs, Intel(R) Xeon(R) CPU @ 2.30 GHz, and
12 GB of RAM.

4. Result Analysis

In this paper, our aim is to analyze the efficiency of the federated approach in detecting
Alzheimer’s disease. For this, we need to find out an optimal model and orientation of
MRI images at first. Therefore, we picked the OASIS dataset and trained the existing
state-of-the-art transfer learning approaches, such as MobileNet, MobileNeV2, ResNet50V2,
InceptionResNetV2, DenseNet121, and DenseNet201. To find out the best orientation of
MRI images, we explored three different orientations that were already prepared in the
OASIS-1 dataset (coronal, sagittal, and transverse). As the number of images in the training
images were not large enough, we enhanced the training set by performing augmentation,
which largely increased the performance.

After selecting the optimal model and orientation, we evaluated the robustness of
the conventional training approach by using two different datasets (OASIS and ADNI).
For this, we trained the optimal model with OASIS in both conventional and federated
approaches and tested with the ADNI, OASIS, and merged test sets. We also evaluated
the performance of the effective deep learning architectures by training with OASIS and
the merged training sets, as well as testing with all three test sets. In this section, all the
performance-related issues are described and analyzed in detail.
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4.1. Performance Evaluation Metrics

After a model is constructed, it is crucial to evaluate its performance. This section
focuses on the most popular evaluation metrics seen in research papers. First, we check the
proportions of true positive, true negative, false positive, and false negative values. After
that, we take a look at a variety of advanced indicators for assessment.

True Positive Values (TP): The TP rate in AD detection is the percentage of times an
AD detection algorithm correctly identifies an image having AD.

True Negative Values (TN): The TN rate in AD detection is the percentage of times
an AD detection algorithm correctly identifies an image not having AD.

False Positive Values (FP): The FP measures the number of times an image is incor-
rectly labeled AD by the model.

False Negative Values (FN): The FN measures the number of times an image is
incorrectly labeled normal by the model.

Sensitivity (Sn): Sn measures how well an architecture can make predictions for
positive samples.

Sn = Recall =
TP

TP + FN
(1)

Specificity (Sp): Sp measures how well an architecture can make predictions for
negative samples.

Sp =
TN

FP + TN
(2)

Precision (Pn): Pn is the degree to which a measurement or result is accurate or precise.

Pn =
TP

TP + FP
(3)

F1 score (F1): F1 is calculated by taking the harmonic average of the accuracy and
recall scores, with lower values being given greater consideration in the calculation.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

Accuracy: It can be defined as the percentage of the total number of samples that
corresponds to the correct prediction of the number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

4.2. Selecting the Optimal Model and Orientation

First, we trained the MobileNet, MobileNeV2, ResNet50V2, InceptionResNetV2,
DenseNet121, and DenseNet201 models with the OASIS dataset, which included 352 images
for training and 84 images for testing (OAS_COR_01, OASIS_TRA_01, OASIS_SAG_01).
Next, we tested the accuracy of the models using the OASIS dataset. These images were
available in all three orientations (coronal, sagittal, and transverse). Table 3 presents an
in-depth comparison of the three different transfer learning architectures’ performances
in each of the three different orientations. When it is evaluated using the coronal plane,
MobileNet provided the highest results in terms of sensitivity (92%), F1 score (87%), and
accuracy (90%), respectively. Other models reached an accuracy in the range of 86% to 89%,
while having a significantly lower sensitivity. Note that sensitivity is extremely important
in the identification of AD. The DenseNet201 model exhibited the worst performance, as
detailed in Table 3. In the case of the transverse plane, the accuracy achieved by ResNet50V2
is 89%, which is the maximum possible score. The average performance of the coronal
plane is significantly higher than that of any of the other models, in the range of 81–85%.
The performance of MobileNet in the sagittal plane (75%) is significantly lower than the
performance of MobileNet evaluated on the coronal plane (90%). MobileNet’s highest
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accuracy in the sagittal plane is 86%. It is therefore evident that all the models performed
well in the coronal plane, with MobileNet providing the best performance.

Table 3. Comparison of performance of transfer learning architectures (conventional training ap-
proach) in the coronal, transverse, and sagittal plane before image augmentation.

CORONAL PLANE

Model Precision (%) Sensitivity (%) F1 Score (%) Specificity (%) Accuracy (%)

DenseNet121 81.00% 73.00 76.00 95.00 86.00
DenseNet201 74.00 60.00 61.00 96.00 81.00
InceptionResNetV2 82.00 82.00 82.00 92.00 88.00
MobileNet 85.00 92.00 87.00 89.00 90.00
MobileNetV2 87.00 79.00 82.00 96.00 89.00
ResNet50V2 88.00 71.00 76.00 98.00 87.00

TRANSVERSE PLANE

Model Precision (%) Sensitivity (%) F1 Score (%) Specificity (%) Accuracy (%)

DenseNet121 77.00 62.00 65.00 96.00 82.00
DenseNet201 72.00 70.00 71.00 89.00 81.00
InceptionResNetV2 76.00 71.00 73.00 92.00 83.00
MobileNet 77.00 78.00 77.00 89.00 85.00
MobileNetV2 72.00 64.00 66.00 93.00 81.00
ResNet50V2 84.00 85.00 84.00 92.00 89.00

SAGITTAL PLANE

Precision (%) Sensitivity (%) F1 Score (%) Specificity (%) Accuracy (%)

DenseNet121 78.00 72.00 74.00 93.00 85.00
DenseNet201 77.00 76.00 77.00 90.00 85.00
InceptionResNetV2 76.00 69.00 72.00 93.00 83.00
MobileNet 80.00 75.00 77.00 93.00 86.00
MobileNetV2 74.00 60.00 61.00 96.00 81.00
ResNet50V2 78.00 67.00 70.00 95.00 83.00

Since the number of images in the training set was insufficient to train these deep
learning architectures, we only augmented the training set (with a total of 2416 images,
1187 of which were labeled as AD MRI and 1229 of which were not AD MRI). The testing
set consists of the same number of images as before, including 18 that were labeled as
AD, 66 that were tagged as non-AD (for a total of 84), OAS_COR_02, OASIS_TRA_02,
and OASIS_SAG_02, as specified in Section 3.1. Table 4 gives information regarding the
performance of various transfer learning architectures after image augmentation. In the
case of the coronal plane, augmentation increased MobileNet’s accuracy from 90% to 92%.
Previously, it was at 90%. After the augmentation, the accuracy of ResNet50V2 raised
to 92%. In the case of the transverse plane, the accuracy achieved by MobileNet after
augmentation is at its maximum (86%). In the sagittal plane, MobileNet accomplished the
highest level of accuracy (85%). MobileNet is the model that performed the best out of all
of the models in this case, and the performance of all of the models is better in the coronal
plane than in the transverse and sagittal planes.

MobileNet performed better in most of the cases, whereas models performed best in
the coronal plane when compared with the performances of the transfer learning algorithms
before and after augmentation. Moreover, after data augmentation, MobileNet achieved
a better performance score than the nonaugmented dataset. As a result, we consider
MobileNet as our best model and the coronal plane as our preferred orientation in this work.
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Table 4. Comparison of performance of transfer learning architectures (conventional training ap-
proach) in the coronal, transverse, and sagittal plane after image augmentation.

CORONAL PLANE

Model Precision (%) Sensitivity (%) F1 Score (%) Specificity (%) Accuracy (%)

DenseNet121 74.00 85.00 73.00 70.00 76.00
DenseNet201 80.00 82.00 81.00 91.00 87.00
InceptionResNetV2 70.00 80.00 66.00 59.00 68.00
MobileNet 92.00 83.00 86.00 98.00 92.00
MobileNetV2 80.00 75.00 77.00 93.00 86.00
ResNet50V2 88.00 87.00 87.00 95.00 92.00

TRANSVERSE PLANE

Model Precision (%) Sensitivity (%) F1 Score (%) Specificity (%) Accuracy (%)

DenseNet121 11.00 50.00 18.00 0.00 21.00
DenseNet201 72.00 79.00 74.00 80.00 80.00
InceptionResNetV2 61.00 52.00 21.00 3.00 24.00
MobileNet 87.00 69.00 73.00 98.00 86.00
MobileNetV2 75.00 75.00 75.00 89.00 83.00
ResNet50V2 74.00 74.00 74.00 87.00 82.00

SAGITTAL PLANE

Model Precision (%) Sensitivity (%) F1 Score (%) Specificity (%) Accuracy (%)

DenseNet121 77.00 78.00 77.00 89.00 85.00
DenseNet201 81.00 78.00 80.00 83.00 85.00
InceptionResNetV2 77.00 87.00 80.00 80.00 83.00
MobileNet 77.00 82.00 79.00 86.00 85.00
MobileNetV2 80.00 65.00 68.00 96.00 83.00
ResNet50V2 76.00 71.00 73.00 92.00 83.00

4.3. Training with OASIS and Testing with ADNI, OASIS, and Merged Dataset

From Section 4.2, it is evident that MobileNet is the go-to model, and the coronal plane
is the selected orientation of MRI images. We evaluated the performance of the federated
learning and conventional approach for different types of experiments. For example, we
trained our model in the ADNI dataset and tested our model in the OASIS dataset, and
vice versa. We also trained our model using the merged dataset and tested it with the
ADNI and OASIS datasets. In every case, we implemented these experiments in both the
federated and conventional approaches and then compared their results in terms of the
different performance evaluation metrics mentioned in Section 4.1.

4.3.1. Conventional Approach (Training with OASIS)

To check the robustness of the MobileNet in Alzheimer’s disease detection, at first, we
trained the MobileNet model with an augmented OASIS training set (OAS_COR_02_train)
and tested it with the ADNI (ADNI_COR_01_test), OASIS (OAS_COR_01_test), and merged
test set (AD_OAS_MERGED_01_test) in the conventional approach. Table 5 provides the
performance of the conventional and federated approaches when the models are trained
with the OASIS dataset. Here, in this approach, MobileNet achieved 91.67% accuracy and
66.67% sensitivity in the OASIS test set, 65.28% accuracy and 12.50% sensitivity in the
ADNI test set, and 76.92% accuracy and 28.50% sensitivity in the merged test set. In all
the cases, there is a huge difference between sensitivity and specificity, which shows that
models were not well-generalized after training in the conventional approach. Table 5
depicts the performance between the conventional approach and the federated approach.

4.3.2. Federated Approach (Training with OASIS)

To evaluate the performance of the model trained in the federated approach, we trained
two MobileNet models with the OAS_FL_01_Local1 and OAS_FL_01_Local2 training sets in
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local machines. We finally obtained the trained MobileNet model with optimal weight. This
model was tested using the ADNI (ADNI_COR_01_test), OASIS (OAS_COR_01_test), and
merged test set (AD_OAS_MERGED_01_test), which is the same as for the conventional
approach. MobileNet acquired 92.86% accuracy and 94.44% sensitivity when tested with
the OASIS test set, 77.78% accuracy and 75.00% sensitivity in the ADNI test set, and 83.33%
accuracy and 69.05% sensitivity in the merged test set. In each case, the federated approach
acquired better accuracy and sensitivity and showed better generalization capability. In
this approach, the model is more capable of distinguishing between two classes than the
conventional training procedure, as is evident in Table 5.

Table 5. Performance comparison between the conventional and federated approaches when trained
with the OASIS dataset.

Test Set Approach Precision (%) Sensitivity (%) Specificity (%) Accuracy (%)

OASIS Conventional 92.31 66.67 98.48 91.67
Federated 77.27 94.44 92.42 92.86

ADNI Conventional 42.86 12.50 91.67 65.28
Federated 64.29 75.00 79.17 77.78

Merged Conventional 66.67 28.57 94.74 76.92
Federated 69.05 69.05 88.60 83.33

4.4. Training with ADNI and Testing with ADNI, OASIS, and Merged Dataset
4.4.1. Conventional Approach (Training with ADNI)

Here, MobileNet was trained with the ADNI_COR_02_training set and tested with
the ADNI (ADNI_COR_01_test), OASIS (OAS_COR_01_test), and merged test sets
(AD_OAS_MERGED_01_test). Table 6 provides the performance of the conventional and
federated approaches when the models were trained with the ADNI dataset. MobileNet
achieved 78.57% accuracy and 55.56% sensitivity in the OASIS test set, 75% accuracy and
75% sensitivity in the ADNI test set, and 75% accuracy and 66.67% sensitivity in the merged
test set. Table 5 compares the performance between the conventional approach and the
federated approach.

4.4.2. Federated Approach (Training with ADNI)

To evaluate the performance of the federated approach, we trained two local Mo-
bileNet models with ADNI_FL_01_Local1 and ADNI_FL_01_Local2 training sets, where
we used the ADNI (ADNI_COR_01_test), OASIS (OAS_COR_01_test), and merged test
set (AD_OAS_MERGED_01_test) to test the performance of the global MobileNet model.
MobileNet acquired 78.57% accuracy while testing with the OASIS test set, 81.94% in the
ADNI test set, and 77.56% accuracy in the merged test set. In the case of sensitivity, the
performance was not up to the mark. However, the federated approach performed better
than the conventional approach in the case of accuracy (see Table 6).

Table 6. Performance comparison between the conventional and federated approaches when trained
with the ADNI dataset.

Test Set Approach Precision (%) Sensitivity (%) Specificity (%) Accuracy (%)

OASIS Conventional 43.48 55.56 80.30 75.00
Federated 50.00 44.44 87.88 78.57

ADNI Conventional 60.00 75.00 75.00 75.00
Federated 78.95 62.50 91.67 81.94

Merged Conventional 52.83 66.67 78.07 75.00
Federated 65.22 35.71 92.98 77.56
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4.5. Training with Merged and Testing with ADNI, OASIS, and Merged Dataset
4.5.1. Conventional Approach (Training with Merged)

Here, the MobileNet was trained with the AD_OAS_MERGED_01_train set and tested
with OASIS (OAS_COR_01_test), ADNI (ADNI_COR_01_test), and merged (AD_OAS_
MERGED_01_test) test sets. In this case, the MobileNet acquired 85.71% accuracy and 55.76%
sensitivity in the OASIS test set, 70.83% accuracy and 62.50% sensitivity in the ADNI test set, and
78.85% accuracy and 64.29% sensitivity using the merged test set. Table 7 shows the performance
of the conventional approach when trained using the merged set.

4.5.2. Federated Approach (Training with Merged)

Here, the merged training set is divided into two portions (AD_OAS_FL_MERGED_01
_Local1, AD_OAS_FL_MERGED_01_Local2) to train the two local MobileNet models. The
derived global MobileNet model was tested with the OASIS (OAS_COR_01_test), ADNI
(ADNI_COR_01_test), and merged (AD_OAS_MERGED_01_test) test sets. In the case of
OASIS, it achieved the highest (95.24%) accuracy and (83.33%) sensitivity, 81.94% accuracy
and 62.50% sensitivity, and 83.97% accuracy and 61.90% sensitivity. Almost in all the cases,
the proposed federated approach performed better, as shown in Table 7.

4.5.3. Federated Approach (Training with ADNI and OASIS in Two Different Machines)

Here, two MobileNet models were trained with the ADNI (ADNI_COR_02_train) and
OASIS (OAS_COR_02_train) sets separately. The found global model was tested with the
same test sets mentioned in the previous sections. This model acquired 91.67%, 77.78%,
and 82.69% accuracy in the OASIS, ADNI, and merged test set, respectively. These results
are lower than those of the federated approach trained with the merged set but greater
than the conventional approach. However, in this approach, the model was found to be
more consistent. We found this model to have better capability of distinguishing between
two classes compared with the other two approaches. This is because the gap between
sensitivity and specificity is lower than in the other two approaches, as depicted in Table 7.

Table 7. Performance comparison between the conventional and federated approaches when trained
with the merged dataset.

Test Set Approach Precision (%) Sensitivity (%) Specificity (%) Accuracy (%)

OASIS

Conventional 71.43 55.56 93.94 85.71
Federated 93.75 83.33 98.48 95.24
Federated with two different training sets in two
local machines 73.91 94.44 90.91 91.67

ADNI

Conventional 55.56 62.50 75.00 70.83
Federated 78.95 62.50 91.67 81.94
Federated with two different training set in two
local machines 66.67 66.67 83.33 77.78

Merged

Conventional 60.00 64.29 84.21 78.85
Federated 74.29 61.90 92.11 83.97
Federated with two different training sets in two
local machines 67.44 69.05 87.72 82.69

4.6. Discussion

The proposed MobileNet acquired more than 95%, 78%, and 83% accuracy in the
OASIS, ADNI, and merged tests, respectively. Figure 6 shows that the MobileNet model
acquired the highest accuracy when trained with the merged dataset in the federated
approach. From this figure, it is also clear that the MobileNet model performed better than
the conventional approach in all the parameters when trained with the ADNI, OASIS, or
merged training sets.
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Figure 6. Performance analysis of the conventional and federated approaches when tested using the
OASIS dataset.

In the case of testing with the ADNI, the MobileNet shows a similar pattern as the
previous one. Here, the model was able to distinguish better between the classes in the case
of training in the federated approach. When trained with OASIS, the federated approach
achieved 77.78% accuracy, whereas the model could acquire only 65.28% accuracy in the
conventional approach. Trained with the ADNI and merged sets, the models were seen to
perform better in the case of those trained with the federated approach (Figure 7).
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Figure 7. Performance analysis of the conventional and federated approaches when tested using the
ADNI dataset.

While testing with the merged test set, the model performs better when trained in
the federated approach in all the cases. If the model is trained with the OASIS dataset,
it achieves 83.33% accuracy in the federated approach, while 76.92% in the conventional
approach. In the case of training with the merged training set, the model achieved 83.98%
accuracy in the federated approach, while only 78.85% in the conventional approach
(Figure 8).
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Figure 8. Performance analysis of the conventional and federated approaches while testing using the
merged dataset.

Therefore, it is evident that models perform better if trained with the federated ap-
proach. We also found the models to be more robust than the conventional approach, since
performance deviation was not significant enough in the case of a change in the training
set. Nevertheless, the models acquired more consistent results in terms of sensitivity and
specificity. This determines the model’s capability in distinguishing between two classes.
Hence, we found the federated approach to be better performing and more robust and
consistent than the conventional approach.

5. Conclusions

Many researchers from all around the world are working to identify the most effective
cure for AD. In this study, we pensively looked into the potential applications of federated
learning for the detection of AD cases. In addition, we used traditional DL-based methods
to find this disease. Out of three distinct planes—coronal, sagittal, and transverse, we
chose coronal to be the optimal orientation plane for MRI brain images. The MobileNet
architecture was discovered to be the optimal model, providing the best performance in
all the cases. To avoid model bias, we used data augmentation strategies. This aids the
model’s understanding of the characteristics of AD MRI images. While training with the
OASIS dataset, the conventional approach achieved an accuracy of 91.67%, whereas the FL
approach achieved 92.86% accuracy. For the ADNI and merged datasets, the FL approach
achieved 77.78% and 83.33%, respectively. The conventional method achieved 65.28% and
76.92% accuracy in this case, which is less than the FL method. Nevertheless, we also
evaluated the robustness of the model by testing it on the OASIS, ADNI, and merged
datasets. In most cases, the FL approach outperformed the conventional approach in terms
of different evaluation parameters. Here, FL achieved 95.24%, 81.94%, and 83.97% accuracy
on the OASIS, ADNI, and merged datasets, respectively. Our study reveals that the FL
method outperforms all the conventional methods and ensures the privacy of the data,
since it does not require the collection of any data. In building an efficient and robust deep
learning architecture in the medical domain, especially in Alzheimer’s disease detection,
collecting medical images is the main barrier. By adopting the proposed federated approach,
this barrier is reduced. We strongly believe that this will encourage more hospitals to allow
researchers to train deep learning models at their hospital due to reduced privacy concerns.
Furthermore, models will be trained on more diverse data, leading to the enhancement
of deep learning models’ robustness and performance. For further improvement of the
model performance, extensive data preprocessing techniques can be exercised. In what
follows, the robustness of the model might be improved by integrating more diverse
datasets containing a greater number of samples, especially positive samples, into the
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model. This may also enhance the efficiency of the approach. Formal verification of the
deep learning models [36,37] can be another dimension that may add value in this domain.
It may enhance trust in AI approaches in medical practitioners, as the system’s correctness
can be verified in this way. The explainability of the proposed model might be another
important area of study.
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